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Program overview

• A two wavelength interferometer has been developed to measure the
n=2 state densities of H, D, or T in a plasma.  This is intended for use in
studying tokamak edge physics. 

• One of the wavelengths is resonant with the 2p-3d transition (ie. Hα, Dα, Tα) 
and is adjusted using a tunable diode laser.

• The other wavelength measures off-resonant effects, ie. index variations
due to free electrons, vibrations etc.

• By varying the laser wavelength during the discharge, information on the 
line shape and center can also be determined.

• All quantities are determined from the measured phase shift, therefore no intensity
calibration is required.

• All measurements are integrated along the laser beam line-of-sight with a
transverse spatial resolution of less than 1 mm.



Spectral line interferometry

• Near an optically allowed transition in a given species,  the refractive index
is significantly enhanced.  The enhancement depends on the:

- absorption oscillator strength
- line shape
- laser wavelength or frequency
- population density of the species in the lower state

• Analysis from Measures, Appl. Opt. 9(3) (1970)
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A non-resonant laser interferometer is 
required to isolate the resonant effects

λR � free electrons  +  vibrations  +  desired species state density

λN � free electrons  +  vibrations

• For this to function optimally λR and λN must have common paths
so environmental factors are the same for both interferometers.



Interferometer design

• λR from a low power (10 mW) tunable diode laser 6500-6600 Å (~10 k$)
- can be used for Hα , Dα , Tα , or CII (6578, 6583)

• λN from a HeNe laser at 6320 Å

• Both interferometers use a heterodyne detection system where an AOM is
used to shift the reference beams by 40 MHz.

• λR & λN are combined and fed into a single mode optical fiber.

• Fibers are used to bring the beams to and from the experimental apparatus.

• λR & λN are split and sent to individual detectors.



Apparatus schematic (I)

• All components are located in an electrically shielded room isolated from vibrations 
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Apparatus schematic (II)

• Laboratory configuration used during the Phase I testing
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Minimum estimated sensitivities for phase detection 
measurements with a heterodyne interferometer.

T(eV) nmin[n=2](cm-2) nmin[n=1](cm-2)*

10 9.0x109 2.2x1012

25 1.4x1010 3.8x1012

50 2.0x1010 5.3x1012

*Based on calculations of Johnson and Hinnon, L.C. Johnson and E. Hinnon, 
J. Quant. Spectrosc. Radiat. Transfer, 13, 333 (1973).



Comparison with alternative techniques
(Hα emission and Lα LIF)

• State Density
– Resonant phase measures n=2 state density (no calibration).
– Emission measures n=3 state density (absolutely calibrated).
– LIF (1220 Å) measures n=1 state density .

• Spatial resolution
– Resonant phase has sub-millimeter resolution in transverse direction while integrating 

alone the line-of-sight.
– Emission has low spatial resolution and requires multiple sensors and complex inversion 

techniques to improve resolution.
– LIF provides local information.

• Spectral resolution
– Resonant phase ≥ 3x10-5 Å defined by laser linewidth.
– LIF typically ≥ 5x10-3 Å
– Emission typically ≥ 5x10-2 Å defined by spectrometer.

• Temporal resolution
– Resonant phase: 2 ms with full spectral scan, 25 ns (40 MHz) at fixed λ.
– LIF limited to 25 Hz laser pulses ~ 40 ms
– Emission depends on the detector.



Phase I experimental test-bed

• Use the gas driven, inverse pinch (IP) plasma source (inverse z-pinch geometry).

• IP source was mounted inside a coaxial plasma opening switch.

• Plasma duration ~ 1 µs,  density ~ 1015 cm-3, Te ~ 1 eV,  1-5 cm axial length.
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Results of the IP surface interaction
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• Motivated by observation of low impurity concentrations in H/POS shots and
high concentrations in Ar/POS shots. 



The behavior of the P(u,ω ) function was verified

• The IP was used with H2 gas in the POS configuration
• 12 shots were taken at different laser wavelengths
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Details of the line were determined from the data
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• β was determined from the
peaks in the phase assuming
α was small.

• wavelength was converted to
(ω-ωo)/β

• P(u,α ) for α = .01 fit the 
data reasonably well

• This result implies a line that
is ~ 1 Å wide (T= 2.3 eV).



The deduced line profile compares well to that 
previously measured by emission



Status of project

• Phase I program has been completed and Phase II proposal submitted

• The Phase II includes a cooperative arrangement with GA

• The Phase II program calls for expanding the diagnostic to a muti-chord
system.



Concluding remarks

• The Phase I program has resulted in a working diagnostic.

• The diagnostic was used to measure the H (n=2) state density
using a pulsed plasma device.

• The line width was also determined from the analysis and agrees
with a previous emission measurement under the same conditions.


